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Thermal Conductivity and Heat Capacity of 
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Using the transient hot-wire method, measurements were made for solid AgC1 of 
both the thermal conductivity, ~, and the heat capacity per unit volume, pc r where 
0 is the mass density. Measurements were made in the temperature range 100 to 
400 K, and at pressures up to 2 GPa. cp(P, T) could be adequately described if the 
acoustic modes were represented by a Debye model and the optic modes by an 
Einstein model. Analysis of ~(T) showed that only the acoustic modes needed to be 
taken into account up to 300 K, but that the optic modes were increasingly 
effective in carrying heat at higher temperatures. ~,(P) was adequately described 
by the Lawson formula, but not by the Leibfried-Schlfimann formula, to which it is 
formally equivalent. Agreement with experiment could be achieved by two 
different modifications of the Leibfried-Schl6mann formula, although neither has 
a firm theoretical basis. 

KEY WORDS: heat capacity; high pressure; silver chloride (AgCI); thermal 
conductivity. 

1. I N T R O D U C T I O N  

AgC1 in the  solid s ta te  is a subs t ance  of  t echn ica l  i m p o r t a n c e  as a p ressure-  

t r a n s m i t t i n g  m e d i u m  in h igh  p ressu re  research .  I t  is also a re la t ive ly  s imple  

subs tance ,  and we shall  exp lo re  in s o m e  de ta i l  how well  its t h e r m a l  p roper t i es  

can  be under s tood  in t e rms  of  ava i l ab l e  t heo re t i ca l  models .  

2. E X P E R I M E N T A L  D E T A I L S  

W e  used the  t r ans i en t  ho t -wi re  m e t h o d  to m e a s u r e  s i m u l t a n e o u s l y  both  

the  t h e r m a l  conduc t iv i ty ,  X, and  the  hea t  c a p a c i t y  per  uni t  vo lume ,  pCp, 
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where p is the mass density. Details of the method have been given elsewhere 
[ 1 ]. It will sometimes be convenient [2] to present and discuss results in terms 
of the thermal resistivity r (= 1/X). 

AgCI powder was compacted under a pressure of 0.3 GPa to form 
polycrystalline plates, which were loaded into our high pressure cell [3]. We 
used samples of both 99% and 99.999% purity, but this made no difference to 
the results. Ordinarily, samples were handled under darkroom conditions, 
but, in one case, we used plates which had been deliberately darkened by 
exposure to light. Our purpose was to test for a radiative confribution to the 
total measured value of X for undarkened samples; this was not found since 
the same results were observed for all samples. 

Measurements were made in the temperature (T)  range 100 to 400 K, 
and at pressures (P) up to 2 GPa. Over these ranges, AgC1 has only a single 
phase [4] of NaCl-type of structure. The accuracy was estimated as _+ 5% in X 
and +_ 10% in pcp, but the precision was much higher. 

3. RESULTS AND COMPARISON WITH PREVIOUS WORK 

3.1 Thermal Conductivity 

Our results for X(P) are shown in Fig. 1, and for r(T) in Fig. 2. Equivalent 
numerical information is presented in Tables I and II. From Fig. 2, it can be 
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Fig. 1. Isothermal pressure dependence of thermal conductivity, X, of 
AgC1. Temperature is given in parentheses. Data shown for 296 K 
correspond to two separate experiments. 
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Fig. 2. Isobaric temperature dependence of thermal resistivity, r, of 
AgC1. Pressure in GPa is given in parentheses. Broken lines correspond to 
fitted equations (Table I1) for T < 300 K. 

seen that we find r ~ T, or equivalently ~ ~ T -1, at pressures of both 0.12 and 
1.5 GPa, for T ~< 300 K. This temperature dependence is in agreement with 
theoretical prediction [5], taking only three-phonon interactions into account. 
Figure 2 also shows a deviation from this predicted behavior for T > 300 K at 
low pressure, which we shall argue can plausibly be attributed to a contribu- 
tion to >, from optic phonons. 

Figure 3 shows comparison with previous work at zero pressure. Present 
work is in reasonable agreement with that of Andersson and B~ickstrfm [6] 
for a polycrystalline sample using the transient hot-wire method at an early 
state of development, but agreement is generally poor with previous work 
using single-crystal samples [7-11]. For T > 200 K, the most likely source of 
the discrepancy between results for single and polycrystalline samples is 
radiative heat transport in the former [10]. We infer that a radiative 

Table I. Isothermal Pressure Dependence of Thermal  Conductivity >, of AgCI Fitted to 
Equations of Form % = A + BP ,  Where >, is in W �9 m -] �9 K- l ,  and P is in GPa 

A B 
T P 

(K) (GPa) 

0.878 0.192 296 0-2.0 
1.083 0.239 238 0-2.0 
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T a b l e  !I. Isobaric Temperature Dependence of Thermal Resistivity r of AgC1 Fitted to 
Equations of Form r = D + E T ,  Where r is in W -1 �9 m �9 K and T is in K 

P T 
D E (GPa) (K) 

-0.020 3.86 x 10 -3 0.12 108-293 
0.284 2.85 x 10 -3 0.12 293-394 

-0.019 2.97 x 10 -3 1.5 102-294 

component  was absent  for our samples,  since da rken ing  by exposure to l ight 
made  no difference to the results.  

For  the pressure dependence  of  X, the present  work yields a value for the 
rat io  X(2 GPa) /X(0 )  = 1.44 at  296 K, as may  be deduced from Fig. 1 or Table  
I. Vereshchagin  et al. [12] measured  the pressure  dependence  of X for AgC1 
using a s teady-s ta te  method at  about  300 K, and we deduce  from their  
measurements  a value for this ra t io  of 1.4. Andersson and B~ickstr~Sm [6] 
made  measurements  using the t rans ient  hot-wire  method up to 1 GPa ,  from 
which a value X(1 G P a ) / X ( 0 )  = 1.25 may  be deduced.  The  corresponding 
value from the present  work is 1.22. Resul ts  f rom the present  work for the 
pressure  dependence  of  X are  thus in sa t i s fac tory  agreement  with both of  these 
previous measurements .  Poor agreement  is found, however,  with previous 
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Fig. 3. Isobaric temperature dependence of thermal resistivity, r, of 
AgCI at atmospheric pressure showing comparison with previous work. 
Polycrystalline samples: present work (extrapolated) (e), [6] (A). 
Single-crystal samples: [7, 8] (xT), [9] (O), [10] (• [111 (1:3). 

300 400 



Thermal Properties of AgCI 293 

results due to Rosander and B/~ckstr6m [13], obtained using a steady-state 
method, which yielded X(2 GPa)/X(0) = 1.21. It seems likely [12] that this 
relatively low value was due to systematic error. 

3.2 Heat Capacity 

Our results for pcp are shown in Figs. 4 and 5. Figure 4 shows a 
comparison with previous work at zero pressure, using measurements of cp 
due to Eastman and Milner [14], and taking a constant value for p = 5.57 g �9 
cm -3. Agreement is within experimental error. The relatively rapid variation 
of pep with T at the lowest temperatures at 1.5 GPa (Fig. 5) may be due in 
part to systematic error. 

4. DISCUSSION 

The dispersion relation is basic to any discussion of thermal properties. 
Since AgCI has a diatomic basis, there are three acoustic and three optic 
modes, the transverse modes being degenerate by symmetry in the [ 100] and 
[111] directions. Vijayaraghavan et al. [15] used neutron inelastic scattering 
to measure the dispersion relation for AgC1. They measured only one of the 
two nondegenerate transverse modes in the [110] direction. The slopes of all 
acoustic modes in the long-wavelength limit around the [100]-[110]-[111] 
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Isobaric temperature dependence of heat capacity per unit 
volume, pep, of AgCI at 0.12 GPa. Previous work at atmospheric pressure 
[14] shown by solid line, taking 0 = 5.57 g �9 cm -3. 
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Fig. 5. Isobaric temperature dependence of heat capacity per unit volume, 
ocp, of AgCI at 1.5 GPa. 

triangle are available from the single-crystal sound velocity measurements o f  
Loje and Schuele [16]. In principle, all acoustic and optic modes need to be 
taken into account for both ~ and Cp. 

Experimental data for ep can be fitted with adequate accuracy to a very 
simple model. This reflects the well-known fact that the calculation of the 
heat capacity is rather insensitive to the detailed features of the dispersion 
relation, or the corresponding density of modes. This is exemplified for AgC1 
by the calculation made by Donecker [17]. He assumed that the acoustic 
modes could be represented by a Debye model, and the optic modes by an 
Einstein model, with characteristic temperatures 0o and 0E, respectively. The 
total heat capacity was then the sum of these two contributions. Donecker's 
additional assumption of an Einstein oscillator having a characteristic 
temperature of 50 K makes no significant difference to the results for T > 100 
K, so we ignore it. Donecker showed that the choice of parameters 0o = 120 K 
and 0E = 200 K gave good agreement with the experimental results of 
Eastman and Milner [14] and hence with the present results at low pressure 
(Fig. 4). 

In order to use Donecker's model to predict the pressure dependence of 
Cp, we need estimates for the pressure dependences of 0o and 0e. Voronov and 
Grigor'ev [18] measured longitudinal and transverse sound velocities under 
pressure for polycrystalline specimens of AgC1. Using a formula for an 
isotropic elastic continuum, they calculated OD(P) and found it to be almost 
independent of pressure up to 2 GPa. The implication that such a result has 
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for )~ will be discussed below. From the infrared transmission measurements 
of Lowndes and Rastogi [19], we estimate that 0E increases by about 15% on 
pressurization to 1.5 GPa. At the latter pressure, we therefore take 0D = 120 
K and 0E = 230 K. The result, compared with zero pressure, is a shift of the 
calculated curve for cr(T ) by about 15 K to higher temperatures. As can be 
seen by comparing Figs. 4 and 5, this is about the shift we observed in the 
measured values of pcp. 

Analysis of the thermal conductivity is more difficult. It is usual to start 
with the Debye formula 

x=! oi.j, (I) 
3 i 

where, for the ith mode, ci is the heat capacity per unit volume, vi the phonon 
velocity, l; the phonon mean free path, and Zi indicates summation over the 
modes. The determination of)~ using a reasonably realistic dispersion relation 
involves complex calculations and has been attempted in only a few cases [20, 
21], but a simple conclusion that canbe  drawn immediately from Eq. (1) is 
that phonons having a small velocity will be ineffective in carrying heat. Such 
phonons are those having a flat dispersion curve, as is often the case for the 
optic modes of a crystal of greater than monatomic basis. However, if we 
assume that the thermal resistivity arises entirely from phonon-phonon 
umklapp processes, then in principle, low velocity phonons cannot be ignored, 
since they may scatter other phonons. For the case where the low velocity 
phonons belong to an optic mode of a crystal of diatomic basis, Slack [22] has 
derived a formula to take into account the resultant optic-acoustic phonon 
interaction. 

In general, optic phonon velocities are not necessarily small. For AgC1, 
the results of Vijayaraghavan et al. [15] show that the transverse optic and 
transverse acoustic velocities are similar in parts of the Brillouin zone. At 
temperatures sufficiently high that significant numbers of optic phonons are 
excited, our previous discussion implies that these can be expected to affect )~ 
in two competing ways. The optic phonons will tend to increase )~ by carrying 
heat, and to decrease )~ through the optic-acoustic interaction. For crystals of 
diatomic basis, it was argued by Devyatkova and Smirnov [23] that the 
competition between these two effects would be regulated primarily by the 
mass ratio ~ and displayed through the temperature dependence r(T). Their 
arguments will now be restated briefly. Analysis of a linear diatomic model 
with nearest neighbor interactions shows that as o- ~ 1, optic phonon 
velocities increase, and the separation in energy of the optic and acoustic 
modes decreases. The former would be expected to lead to greater heat 
transport by optic phonons, while the latter should enhance the optic-acoustic 
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interaction. In order to decide which of these two influences on the thermal 
conductivity was the more important for a given material, Devyatkova and 
Smirnov proceeded empirically. Experimental data for a number of crystals 
of diatomic basis shows that r(T) generally exhibits three distinct linear 
regions. For T < 00, r = bT, where b is a constant, the general form of which 
will be discussed below. This is the temperature dependence which is expected 
when the thermal resistivity arises from three-phonon umklapp processes in a 
solid of monatomic basis [5], strictly at constant volume. At such low 
temperatures, optic modes are considered to have negligible influence on the 
thermal conduction process. At the highest temperatures, r = b'T, where b' v~ 
b. Optic modes may be considered to be fully effective in relation to thermal 
conduction. In this connection, it seems reasonable that at sufficiently high 
temperatures, energy gaps in the dispersion relation should be relatively 
unimportant on the scale of thermal energies. There is thus a range of 
temperature intermediate between the regions characterized by differing 
values of the constant of proportionality (b or b'), and this intermediate region 
may be taken to correspond to the change from negligible to full influence of 
the optic modes on thermal conduction. When r increased less rapidly than 
bT in the intermediate region, Devyatkova and Smirnov inferred that the 
effect of increasing influence of optic phonons was exhibited predominantly 
through the heat which they transported rather than through optic-acoustic 
interactions, and conversely. The former behavior was correlated empirically 
with ~ > 2. 

Our results for AgC1 at 0.12 GPa (Fig. 2) are reasonably consistent with 
the analysis of Devyatkova and Smirnov [23]. The boundary between the low 
and intermediate temperature regions described above may be taken to occur 
at about 300 K. This is substantially above the Debye temperature, which is 
different than for the substances considered by Devyatkova and Smirnov. We 
infer that for T > 300 K, the optic modes exert an increasing influence on 
thermal conduction in such a way that heat transport by optic phonons is 
more important than optic-acoustic interactions. This inference is consistent 
with the analysis of Devyatkova and Smirnov since ~r = 3.1 for AgC1. The 
highest temperature region described above (r = b'T) was not observed in the 
temperature range of our experiments. 

According to this analysis, and from Fig. 2, we infer that optic phonons 
have an insignificant influence, or at least an insignificant net influence, on 
thermal conduction at 300 K. By contrast, the total heat capacity at this 
temperature is made up of approximately equal contributions from the 
acoustic and optic modes. This fact may be demonstrated either by detailed 
inspection of Donecker's [ 17] model, or more directly by simply noting that cp 
at 300 K is nearly 6R per mole, where R is the gas constant. Such a difference 
in the influence of the optic modes on the heat capacity on the one hand, and 
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on thermal conduction on the other, must presumably be connected, probably 
in a complex way, with the velocities and mean free paths of the optic 
phonons. 

We now consider the pressure dependence of )~ for T = 300 K. For 
reasons just described, we assume that only the acoustic modes need to be 
taken into account, as is done (strictly at constant volume) by the Leibfried- 
Schl6mann (LS) formula [5], which is 

M a O  3 
2~ = B -  (2) 

3/2T 

In Eq. (2), M is the atomic mass, a is the lattice parameter, 0 D is the Debye 
temperature, 3' is the Griineisen parameter, and B is a constant. Although the 
LS formula was derived for a crystal of monatomic basis, it seems reasonable 
to suppose that it can be applied to the acoustic modes of a crystal of diatomic 
basis if M is taken to be some reduced or averaged mass. 

Suppose we use Eq. (2) to consider X(P), and employ the data of 
Voronov and Grigor'ev [18]. As described above, these workers deduced from 
their measurements of sound velocity on polycrystalline samples that 0D was 
almost independent of pressure up to 2 GPa. Equation (2) then implies that 
the pressure dependence of X is due almost entirely to the pressure depen- 
dence of 3'. In the range 0-2 GPa, X increases by about 40%, so 3/would need 
to decrease by about 20% to satisfy Eq. (2). Such a large pressure dependence 
of 3' is improbable [ ! 2, 24], but there are no independent data. 

In a previous discussion of the pressure dependence of X for AgC1, 
Vereshchagin et al. [12] used the Lawson formula, which is 

)k ~ ( 'y2K3/2pS/6T ) -1  (3) 

where K is the compressibility. With the same data of Voronov and Grigor'ev 
[18] as was used in the preceding paragraph, only now for K rather than for 0z), 
Vereshchagin et al. were able to achieve good agreement with experiment for 
the pressure dependence of 2~, with the assumption that 3' was independent of 
pressure. Such agreement may be fortuitous, but we can at least conclude 
that the LS and Lawson formulas are inconsistent in relating acoustic and 
thermal data for AgC1, as was noted previously by Rosander and B/ickstr6m 
[131. 

However, working at the same level of approximation as was used in the 
original derivation of the Lawson formula [25], we can also derive it from the 
LS formula. We write 0D - v a  -1 ~ r - 1 / 2 p - l / 2 a  1, where v is some average 
sound velocity, and note that a - p-1/3. Substitution in the LS formula then 
yields the Lawson formula. This formal derivation is not, in fact, valid for 
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AgC1, since the implied relation Oo ~ K-1/2p -1/6 is not satisfied, according to 
data of Voronov and Grigor'ev [ 18]. 

This leads us to examine more closely the quantity 0o. As described 
above, Voronov and Grigor'ev [18] used an isotropic elastic continuum 
approximation, with the result that 0D was nearly independent of pressure up 
to 2 GPa. To show that this result is not simply a consequence of the 
continuum approximation, we consider the data of Loje and Schuele [16], 
obtained using single-crystal specimens. These workers made measurements 
up to 0.1 GPa, and deduced initial derivatives dlnC/dP, where C represents 
an elastic constant. If we assume that these initial logarithmic derivatives are 
independent of pressure up to 1 GPa, we can calculate the elastic constants at 
the latter pressure. Using standard formulas relating elastic constants to 0D, 
as described by Alers [26], we can calculate this quantity at 0 and 1 GPa. The 
result is that we find almost no change of 0D over this range of pressure, just as 
for the continuum approximation, compared with a corresponding change of X 
of about 20%. Use of a continuum approximation for 0o is therefore not the 
reason why the LS formula fails to adequately describe the pressure depen- 
dence of k. 

Such a failure of the LS formula has been previously noted [24,27] in 
connection with the alkali halides. Although a modest pressure dependence of 
3' was allowed for, agreement between the LS formula and experiment could 
only be achieved for the alkali halides [24] through an additional factor 
involving elastic constants, (ClI(P)/c44(P))~ This factor had been 
deduced empirically, based on semiquantitative arguments concerning elastic 
anisotropy. For AgC1, this factor can be evaluated at 0 and 1 GPa, using the 
data of Loje and Schuele [16] as described above. The ratio for the two 
pressures then yields an estimate for k(1 GPa)/X(0), taking the unmodified 
LS formula to give no change of k with pressure. The result is the value 1.17, 
compared with an experimental value of 1.22. This empirical modification of 
the LS formula therefore yields reasonable agreement with experiment for 
AgC1. 

An alternative modification of the LS formula may also be devised. We 
note that it is of the essence of the Debye model, and of the LS formula for X, 
that the vibrational spectrum of the acoustic modes is characterized by means 
of a single parameter 0o. Similarly, in the LS formula, the anharmonicity is 
characterized by means of a single parameter 3". The consequent averaging 
may obscure significant features of the pressure dependence, especially in 
relation to k. We shall attempt to reduce this inherent averaging by assuming 
without proof that an expression of the form of the LS formula may be 
applied to each polarization branch of the acoustic spectrum, considered 
separately, and the result summed. This implies that for the ith mode, with 
velocity vi, we define a corresponding characteristic temperature 0i - rip 1/3, 
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and also make use of the mode Griineisen parameter %. Also implied is an 
expression of the form 

, 3/2 (4) 

where Z; indicates summation over the modes. The elastic constants at 0 and 
1 GPa, calculated from the data of Loje and Schuele [ 16] as described above, 
yield the corresponding mode sound velocities at these pressures in the [ 100], 
[ 110], and [ 111 ] directions. The corresponding mode Grtineisen parameters 
have been tabulated by Loje and Schuele, and we assume these to be 
independent of pressure. We can then calculate the ratio ~(1 GPa)/M0) 
using Eq. (4), and the results are the values 1.20, 1.18, and 1.18 in the [100], 
[110] and [111] directions, respectively. The corresponding experimental 
result is 1.22. Although such good agreement may be to some extent 
fortuitous, it seems reasonable to conclude that the LS formula needs 
significant modification before it can be used with confidence to predict the 
pressure dependence of X. The modification we have proposed, Eq. (4), leads 
to a successful prediction of X(P) from elastic constants for AgC1 but requires 
both theoretical and further experimental justification before it can be 
considered to be of more general validity. 

5. CONCLUSIONS 

Both acoustic and optic modes need to be taken into account in 
discussing the thermal properties of AgC1. The heat capacity can be 
adequately described if the acoustic modes are represented by a Debye model 
and the optic modes by an Einstein model. Analysis of the thermal conductiv- 
ity is more complex, and less certain. From the temperature dependence of 
the thermal resistivity, it appears that only the acoustic modes are effective in 
thermal conduction up to about 300 K. At higher temperatures, the optic 
modes appear to show their effect predominantly in the transport of heat, 
rather than in optic-acoustics scattering, Using available sound velocity 
data, the pressure dependence of the thermal conductivity at 300 K is 
adequately described by the Lawson formula, with the assumption that the 
Griineisen parameter is independent of pressure. On the same basis, the 
Leibfried-Schl6mann formula fails to agree with experiment, unless either of 
two possible modifications is made. One modification is to take into account 
elastic anisotropy through an empirical function of the elastic constants, and 
the other is to assume that a formula of Leibfried-Schl~mann type may be 
applied to each acoustic mode separately. Both modifications yield reasonable 
agreement with experiment, but neither has a firm theoretical basis. 
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